Does Multispectral Texture Features Really Improve Cervical Cancer Detection?

نویسندگان

  • Tong Zhao
  • Jiayong Zhang
  • Yanxi Liu
چکیده

For cervical cancer detection, the performance of multispectral texture (MST) features extracted from multispectral Pap smear images is evaluated. In this study we carried out pairwise comparisons between different image features, including MST versus average spectral texture features (AST, without spectral information), and MST versus multispectral intensity features (MSI, without texture information). We demonstrate, experimentally, that well-selected MST features combining both multispectral and texture information can achieve better classification results (ROC curves) for cervical cancer detection from multispectral Pap smear images. Furthermore, we investigate which type of wavelet texture features (orthogonal, bi-orthogonal or non-orthogonal) individually or in combination is most effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning multispectral texture features for cervical cancer detection

We present a bottom-up approach for automatic cancer cell detection in multispectral microscopic thin Pap smear images. Around 4,000 multispectral texture features are explored for cancer cell detection. Using two feature screening measures, the initial feature set is effectively reduced to a computationally manageable size. Based on pixel-level screening results, cancerous regions can thus be ...

متن کامل

Cervical Cancer Detection Using SVM Based Feature Screening

We present a novel feature screening algorithm by deriving relevance measures from the decision boundary of Support Vector Machines. It alleviates the “independence” assumption of traditional screening methods, e.g. those based on Information Gain and Augmented Variance Ratio, without sacrificing computational efficiency. We applied the proposed method to a bottom-up approach for automatic cerv...

متن کامل

Multispectral Spatial Characterization: Application to Mitosis Detection in Breast Cancer Histopathology

Accurate detection of mitosis plays a critical role in breast cancer histopathology. Manual detection and counting of mitosis is tedious and subject to considerable interand intra-reader variations. Multispectral imaging is a recent medical imaging technology, proven successful in increasing the segmentation accuracy in other fields. This study aims at improving the accuracy of mitosis detectio...

متن کامل

Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery

PURPOSE This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. MATERIALS AND METHODS In the proposed approach, the region of interest containing PT is first extracted ...

متن کامل

Effective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks

Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002